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Correction

CELL BIOLOGY
Correction for “A respiratory chain controlled signal transduction
cascade in the mitochondrial intermembrane space mediates hy-
drogen peroxide signaling,” by Heide Christine Patterson, Carolin
Gerbeth, Prathapan Thiru, Nora F. Vögtle, Marko Knoll, Aliakbar
Shahsafaei, Kaitlin E. Samocha, Cher X. Huang, Mark Michael
Harden, Rui Song, Cynthia Chen, Jennifer Kao, Jiahai Shi, Wendy
Salmon, Yoav D. Shaul, Matthew P. Stokes, Jeffrey C. Silva,
George W. Bell, Daniel G. MacArthur, Jürgen Ruland, Chris
Meisinger, and Harvey F. Lodish, which appeared in issue 42,
October 20, 2015, of Proc Natl Acad Sci USA (112:E5679–E5688;
first published October 5, 2015; 10.1073/pnas.1517932112).
The authors note that on page E5683, left column, first full

paragraph, lines 3–4, “Fig. S3 D and E” should instead appear as
“Fig. S2 D and E”; and in the same paragraph, line 9, “Fig. S3D”
should instead appear as “Fig. S2D.”
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Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2)
govern cellular homeostasis by inducing signaling. H2O2 modulates
the activity of phosphatases and many other signaling molecules
through oxidation of critical cysteine residues, which led to the notion
that initiation of ROS signaling is broad and nonspecific, and thus
fundamentally distinct from other signaling pathways. Here, we re-
port that H2O2 signaling bears hallmarks of a regular signal trans-
duction cascade. It is controlled by hierarchical signaling events
resulting in a focused response as the results place the mitochondrial
respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn up-
stream of tyrosine-protein kinase SYK (Syk), and Syk upstream of
numerous targets involved in signaling, transcription, translation, me-
tabolism, and cell cycle regulation. The active mediators of H2O2 sig-
naling colocalize as H2O2 induces mitochondria-associated Lyn and
Syk phosphorylation, and a pool of Lyn and Syk reside in the mito-
chondrial intermembrane space. Finally, the same intermediaries con-
trol the signaling response in tissues and species responsive to H2O2

as the respiratory chain, Lyn, and Sykwere similarly required for H2O2

signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Con-
sistent with a broad role, the Syk pathway is coexpressed across
tissues, is of early metazoan origin, and displays evidence of evolu-
tionary constraint in the human. These results suggest that H2O2

signaling is under control of a signal transduction pathway that links
the respiratory chain to the mitochondrial intermembrane space-
localized, ubiquitous, and ancient Syk pathway in hematopoietic
and nonhematopoietic cells.

fostamatinib | dasatinib | rotenone | Btk | PTPN6

The accumulation of oxygen on earth not only enabled aerobic
respiration but also forced life to adapt to its toxic effects.

Molecular oxygen (O2) inevitably forms reactive oxygen species
(ROS) such as superoxide (O2

−) and the more stable hydrogen
peroxide (H2O2) due to its proclivity to react with univalent elec-
tron donors, such as flavin enzymes of the respiratory chain or
NADPH oxidase that releases H2O2 into the extracellular space.
Relevant other sources of extracellular and intracellular H2O2 in-
clude environmental exposure to ozone, UV light, and ionizing
radiation (1, 2). Among the most conserved defense mechanisms
against the oxidizing effects of H2O2 are detoxifying enzymes, such
as catalase, as well as aquaporins that control the influx of H2O2
into the cell (3–7). These mechanisms are highly efficient and
adaptable, and provide an explanation for the great variation in
susceptibility to H2O2 among cell types despite the generally low
intracellular concentrations across bacteria, plants, and mammals
(3, 8, 9). Indeed, it requires up to 10 mM exogenous H2O2 to induce
a measurable signaling response and more than 30 mM H2O2 to

induce necrotic blebbing in some mammalian cells, while plant
tissues can contain up to 100 mM H2O2 (10–13).
Life further evolved to communicate and convert the presence of

H2O2 into diverse cellular responses appropriate to the amount of
intracellular and extracellular H2O2 the organism is faced with (9, 14,
15). In the metazoan lineage, it appears that such mechanisms were
usurped to amplify receptor-mediated signaling: Engagement of a
large number of plasma membrane resident receptors, as well as
extracellular H2O2, results in increased intracellular ROS production
by the respiratory chain, and much of such induced cellular re-
sponses, including inflammasome signaling, NF-κB activation, and
B-cell receptor (BCR)–induced proliferation, is ROS-dependent (9,
16–22). It is thus clear that extracellular and intracellular H2O2 is an
ancient and essential mediator of cellular homeostasis linked to a
wide range of physiological and pathological responses and numer-
ous diseases (23, 24). However, the underlying mechanisms and their
evolutionary purpose remain largely elusive.
A critical question is how the cell translates an encounter with

H2O2 into a distinct cellular response. Early work demonstrated
that H2O2 reversibly oxidizes deprotonated cysteine residues,
and thereby inactivates protein tyrosine phosphatases. Thus
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Both the mitochondrial respiratory chain and reactive oxygen
species (ROS) control numerous physiological and pathological
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be distinct from other signal transduction pathways. Here, we
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space-localized conserved Syk pathway and results in a focused
signaling response in diverse cell types. The results thus reveal a
mechanism that allows the respiratory chain to communicate with
the remainder of the cell in response to ROS.
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inactivated phosphatases were hypothesized to shift the equi-
librium of inactive to active kinases resulting in enhanced kinase
activity (18, 25, 26). By now, a large number of redox modifi-
cations in phosphatases, kinases, adapters, receptors, and tran-
scription factors have been proposed to modulate signaling,
among them multiple components of the BCR signaling pathway
such as tyrosine-protein kinase Lyn, tyrosine-protein kinase SYK
(Syk), tyrosine-protein phosphatase nonreceptor types 6 and 11
(SHP1/PTPN6; SHP2/PTPN11), phosphatase and tensin homolog,
and a mitogen activated protein (MAP) kinase serine/threonine
phosphatase (27–36). However, it has been challenging to prove
or disprove the physiological relevance of such a mechanism, and
results have been difficult to reconcile as a whole (3, 26, 35).
Nevertheless, these findings have resulted in the view that ROS
signaling fundamentally differs from classical signal transduction
because it broadly targets signaling molecules and thus assumes
a relative independence of each redox-modified component in
promoting signaling.
Although not excluding a contribution of cysteine modifica-

tions to ROS signaling, it is conceivable that H2O2 signaling, in
fact, resembles other signaling pathways characterized by a cas-
cade of phosphorylation events that originate locally and control
a distinct signaling response in all tissues and species responsive
to the ligand. Compatible with the existence of a few upstream
mediators of H2O2 signaling, limited evidence indeed exists
supporting that kinases, such as MAP kinases and Syk, are crit-
ical intermediaries of H2O2-induced signal transduction in yeast,
plants, and chicken cells, respectively (13, 15, 37). However, the
concept remains currently unexplored, in part, because it implies
the existence of a “ROS receptor” that initiates signaling, a notion
that has been dismissed previously (13, 18). Here, we provide evi-
dence in support of such a model, demonstrating that H2O2 signaling

is under control of the respiratory chain and the mitochondrial in-
termembrane space-localized Syk pathway leading to a circumscribed
signaling response in B lymphocytes and fibroblasts.

Results
Syk Is Critical for H2O2-Induced Activation of Bkt, PLCγ2, JNK, and Akt.
Receptor-activated signal transduction cascades typically use the
same intermediaries to induce a cellular response in all tissues
responsive to the ligand and are often conserved in different
species (38). Because H2O2 induces signaling across many tissues
and species, we speculated that Syk is a critical mediator of H2O2
signaling in both hematopoietic and nonhematopoietic cells, as
well as in different vertebrate species. To test this idea, we H2O2-
stimulated ex vivo harvested mouse splenic B cells and freshly
derived mouse embryonic fibroblasts (MEFs) briefly pretreated
with the Syk inhibitor R406 (39, 40), as well as Syk-deficient
DT40 B cells, which tolerate genetic Syk deficiency well, unlike
primary B cells, and are derived from the genetically stable chicken
DT40 B-cell line (41–44).
Both Syk inhibition with R406 in B cells and MEFs, as well as

genetic Syk deficiency in DT40 B cells, resulted in strongly de-
creased H2O2, as well as anti-IgM–induced phosphorylation of
tyrosine-protein kinase BTK (Btk), phospholipase Cγ2 (PLCγ2),
and c-Jun N-terminal kinase (JNK) and some reduction in
extracellular-signal regulated kinase (ERK) and p38 mitogen-
activated protein kinase (p38) phosphorylation (Fig. 1 A and B).
Consistent with decreased PLCγ2 phosphorylation, H2O2-induced
calcium flux was greatly reduced in Syk-deficient DT40 B cells
(Fig. 1C). However, H2O2 resulted in no or minor loss of phos-
phorylation at inhibitory Lyn Tyr507 and intermediate reduction
of phosphorylation at activating Lyn Tyr396 and of SHP1 in Syk-
inhibited and Syk-deficient cells (Fig. 1A). These findings suggest
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Fig. 1. Syk is critical for H2O2-induced activation of Btk, PLCγ2, JNK, and Akt. (A and B) Immunoblots of mouse splenic B cells and primary MEFs pretreated
with 2 μM R406 and Syk-deficient DT40 B cells stimulated with 1 mM H2O2 for 5 min or 50 μg/mL anti-mouse IgM for 3 min (B cells), 5 mM H2O2 for 10 min
(MEFs), and 5 mM H2O2 for 5 min or 10 μg/mL anti-chicken IgM for 3 min (DT40 B cells). (C) Calcium flux of Syk-deficient DT40 B cells stimulated with 5 mM
H2O2 or 10 μg/mL anti-IgM as determined by the emission ratio of Indo-1. (D) Immunoblots of mouse splenic B cells and primary MEFs pretreated with 2 μM
R406 and Syk-deficient DT40 B cells stimulated as indicated for 10 min.
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that Syk mainly acts downstream of Lyn in H2O2 signaling similar to
signal transduction by the BCR but also has a role in feedback
regulation of Lyn in response to H2O2. Stimulation with 0.1–0.6 mM
H2O2, but not higher concentrations, revealed decreased Akt phos-
phorylation in Syk-inhibited B cells and MEFs and in Syk-deficient
DT40 cells (Fig. 1D), highlighting a role for Syk also at low H2O2
concentrations and expanding on similar observations in DT40 B
cells (45). Syk is thus critical for Btk, PLCγ2, JNK, and Akt but not,
or less so, for Lyn and SHP1 activation in response to high and low
extracellular H2O2 concentrations across tissues and species.

Syk Controls Tyrosine Phosphorylation of Major Pathways Involved in
Basic Cellular Processes. Cellular signal transduction induced by an
external stimulus generally results in a circumscribed signaling re-
sponse mediated by a few upstream kinases that reversibly phos-
phorylate downstream effectors (38). Syk inhibition with R406 in
B cells and MEFs, as well as genetic Syk deficiency in DT40 B cells,
resulted in strongly decreased H2O2-induced tyrosine phosphoryla-
tion of numerous protein species, suggesting that these proteins are
direct or indirect tyrosine phosphorylation targets of Syk (Fig. 2A).
To determine their identity, we performed label-free quantitative
proteomics of phospho-Tyr–enriched lysates of H2O2-stimulated
Syk-deficient DT40 B cells and H2O2-treated controls. The abun-
dance of one-third of all phosphopeptides mapping to 455 homol-
ogous human genes was more than 2.5-fold decreased in H2O2-
stimulated Syk-deficient DT40 B cells compared with controls (Fig.
2B and Dataset S1), suggesting that Syk is a major regulator of
protein tyrosine phosphorylation in the presence of H2O2. These

phosphopeptides included multiple peptides mapping to Btk and
PLCγ2, consistent with decreased H2O2-induced phosphorylation of
these proteins as judged by Western blotting (Fig. 1A and Dataset
S1). Another 57 unique human homologs were identified that dis-
played an exclusive increase in phosphorylation in Syk-deficient
cells, consistent with differential regulation by Syk (Fig. 2B and
Dataset S1). Eighty-two percent of all Syk-regulated genes were
found to be part of a network of proteins with known interactions
and associations, suggesting a functional relationship (Fig. 2C).
Closer examination revealed that the network components cluster-
ing around Syk contained numerous members of major signaling
pathways related to the Syk, NF-κB, MAPK, PI3 kinase, JAK/
STAT, and rho/ras/rac signaling pathways (Fig. 2C and Dataset S1),
some of which are known Syk targets in response to immune re-
ceptor engagement (46). Further, the identified Syk targets were
greatly enriched for basic cellular processes. They broadly fell into
categories such as transcription, translation, protein folding, me-
tabolism, cell cycle regulation, and tumor suppression, and they
contained numerous functionally important and well-studied pro-
teins, many of which have been implicated in ROS signaling (Table
1 and Dataset S1). In summary, these findings suggest that Syk is
a critical mediator of a distinct signaling response to extracellular
H2O2 focused on the regulation of basic cellular processes.
Of note, the cellular models used in this study were remarkably

resistant to the effects of H2O2 in our hands, consistent with some
previous results (47, 48). Stimulation with a minimum of 1 mM
H2O2 for 5 min or 5 mM for 10 min was required in primary B
cells and MEFs, respectively, to detect robust H2O2-induced
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tyrosine phosphorylation of Syk pathway members Lyn, Syk, SHP1,
Btk, and PLCγ2, as well as of many other proteins (Fig. 1D and Fig.
S1A). These concentrations were well below saturation in primary B
cells (Fig. S1A) and did not result in signs of disintegration after the
stimulation period as suggested by intact cellular and mitochondrial
ultrastructure in B cells and MEFs (Fig. S1B). In MEFs, H2O2
stimulation resulted in a dose-dependent decrease in cell recovery
that was partially rescued by pretreatment with R406 and less so by
cyclosporin A, an inhibitor of mitochondrial transition pore opening
and H2O2-induced apoptosis (49) (Fig. S1 C and D). DT40 B cells
required stimulation with 5 mM H2O2 for 5 min to detect Syk
phosphorylation (Fig. 1D). Similar to MEFs treated with H2O2 and
R406, these treatment conditions resulted in decreased cell re-
covery of DT40 B cells that were partially rescued by Syk deficiency
(Fig. S1E). Further, we observed that the signaling response to
H2O2 and susceptibility to H2O2-induced cell death were greatly
affected by culture conditions. For example, H2O2 but not BCR
signaling in B cells almost completely disappeared in response to
prior serum deprivation for 2 h (Fig. S1F), suggesting that meta-
bolic health is a critical determinant of H2O2 signaling. Overall,
these results suggest that the high H2O2 concentrations used in
parts of this study reflect physiological doses of extracellular H2O2
to B cells and MEFs because they were either greatly below
saturation of the signaling response or elicited regulated “pro-
grammed” cellular responses.

Lyn but Not Protein Tyrosine Phosphatases Are Required for H2O2-
Induced Syk Activation. Signal transduction cascades are charac-
terized by hierarchical signaling events, in which upstream media-
tors diversify and amplify the signaling input (38). Protein tyrosine
phosphatases were previously proposed to initiate and promote
H2O2 signaling as a result of redox-mediated inactivation (18, 25,
26). We therefore hypothesized that protein tyrosine phospha-
tases might be upstream activators of Syk, and that inhibition or
loss of relevant phosphatases should therefore diminish H2O2
signaling in a cellular context. To address this question as it
relates to the Syk pathway, we pretreated primary B cells and
MEFs with the general protein tyrosine phosphatase inhibitor
sodium orthovanadate (Na3VO4) (50), followed by stimulation
with H2O2. Na3VO4 had little effect on protein tyrosine phos-
phorylation in the absence of H2O2 in B cells and MEFs (Fig.
3A), suggesting that decreasing protein tyrosine phosphatase
activity is not sufficient to induce signaling. Consistent with
these findings, cell recovery was normal after overnight culture

of MEFs with Na3VO4 (Fig. S2 A and B). However, H2O2 com-
bined with prior Na3VO4 treatment led to strongly enhanced
phosphorylation of Syk pathway members Lyn, Syk, Btk, PLCγ2,
and many other proteins, as well as increased phosphorylation of
ERK, JNK, and p38. Enhanced cellular signaling in H2O2-stimu-
lated Na3VO4-pretreated MEFs correlated with reduced cell re-
covery after overnight culture similar to treatments with higher
concentrations of H2O2 that induce increased Syk pathway acti-
vation (Figs. S1 A and C and S2 A and B). Genetic deficiency of
SHP1 and SHP2, the main phosphatases dephosphorylating Syk
(51), resulted in normal or slightly enhanced phosphorylation of
the Syk pathway following H2O2 stimulation in DT40 B cells
(Fig. 3A). These results are thus consistent with a nonessential
role of SHP1, SHP2, and other protein tyrosine phosphatases in
H2O2-induced Syk pathway activation.
Lyn is a membrane-bound Src family kinase critical for Syk

activation downstream of the BCR (52, 53). We therefore rea-
soned that Lyn might be critical for H2O2-induced activation of
the Syk pathway in hematopoietic and nonhematopoietic cells
as well. Treatment of primary B cells and MEFs with the Src
family kinase inhibitor dasatinib (39) resulted in a reduction of
both H2O2 and anti-IgM–induced tyrosine phosphorylation of
Lyn, consistent with Lyn inhibition, as well as reduced Syk, SHP1,
Btk, and PLCγ2 phosphorylation and reduced general protein
tyrosine phosphorylation. Similarly, Lyn-deficient and Lyn/Syk-
doubly deficient DT40 B cells treated with H2O2 exhibited
reduced phosphorylation of Syk and its downstream target pro-
teins, thus adding to earlier results (48) (Fig. 3B). Dasatinib
treatment and genetic deficiency of Lyn also led to a reduction in
H2O2- and anti-IgM–induced JNK and ERK but not p38 phos-
phorylation (Fig. 3B). In summary, these results suggest that Src
family kinases, and Lyn in particular, are upstream regulators of
Syk and SHP1 activation in response to H2O2 as well as BCR
engagement.

Interference with the Respiratory Chain Selectively Diminishes H2O2-
Induced Activation of Lyn and the Syk Pathway. In addition to pro-
ducing ATP through aerobic respiration, the mitochondrial
respiratory chain is involved in signal transduction in the absence of
apparent stimuli as well as in response to ROS-inducing stressors
and extracellular H2O2 (54–57). To test whether the respiratory
chain might also play a role in H2O2-induced activation of Lyn and
the Syk pathway, primary B cells, MEFs, and DT40 B cells were
treated with 50 nM rotenone, a complex I inhibitor (58). Consistent

Table 1. Examples of tyrosine-phosphorylated proteins regulated by Syk in the presence of H2O2 grouped by biological process as
identified by label-free quantitative proteomics of phospho-Tyr–enriched lysates of H2O2-stimulated Syk-deficient DT40 B cells
and H2O2-treated controls

Biological process

No. of Syk-
regulated
pY proteins Examples

Epigenetic regulation 14 MLL/KMT2A, DNMT1, KDM4A, PBRM1
Transcription 24 POLR1A, POLR2B, POLR3E, MED1, HMGB1, YY1, BACH1
Posttranscriptional regulation 35 DICER1, HNRNPK, SF3A1, SF3B, SMG1, SYNCRIP, SNRPC
Nuclear import/export 8 NUP98, NUP210, IPO7, DDX3X
Translation 34 EIF3A, EIF5, EEF1D, EEF2K, AARS, RPL26, RPL35A, RPS2, STAU1,

DHX29, FXR1, UPF1
Protein folding 10 HSPA8, HSP90AA1, HSPD1, DNAJA1 CDC37
Proteolysis 34 PSMA3, PSMB5, ADAM17, ANAPC1, BTRC, CYLD, USP9X, USP16, ANXA2
Metabolic pathways 34 IGF2R, GAPDH, PDH1A, FDPS, ADSL, MDH2, SREBF2, FASN, LSS, CYP51A1,

HGS, TOMM34, IRS1, GSK3B, LDHB
Cell cycle/tumor suppression 64 POLA1, TK1, KIF11, KIF15, DCTN2, CDC7, CDK1, CDK2, CDK5, LATS1, MLH1,

RAD51, MGMT, VCP, BUB1, WEE1, STK4/MST1, DYRK2, NEDD9, PAK2, BCL11A,
PDCD4, AXIN1

Redox regulation 4 SESN1, PRDX1, HVCN1, NCF4

Italicized names denote an increase in tyrosine phosphorylation of these proteins in H2O2-treated Syk-deficient DT40 cells, whereas tyrosine phosphor-
ylation of all other proteins was decreased in the Syk-deficient cells.
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with results in other cell types (59), culture of MEFs with this
concentration of rotenone and high-glucose culture medium for
16 h did not impair viability (Fig. S2C).
Treatment with rotenone alone for 30 min did not induce ac-

tivation of the Syk pathway at a concentration of 50 nM and
higher despite induction of mitochondrial ROS (Fig. 3C and Fig.
S3 D and E). It thus appears that ROS is not sufficient to induce
Syk signaling. However, addition of H2O2 to rotenone-pretreated
cells resulted in almost complete loss of phosphorylation at acti-
vating Lyn Tyr396 but normal phosphorylation at inhibitory Lyn
Tyr507 and only partial or no loss of p38 phosphorylation (Fig. 3C
and Fig. S3D). These findings suggest that the mitochondrial re-
spiratory chain has a selective role in H2O2-induced activation
but not inhibition of Lyn nor H2O2-induced activation of p38 and
that rotenone combined with short-term H2O2 treatment
does not reduce cellular ATP to levels prohibiting ATP-
dependent kinase signaling. Consistent with decreased Lyn activ-
ity, rotenone also led to a strong reduction of H2O2-induced
tyrosine phosphorylation of the Syk pathway members Syk, SHP1,
Btk, PLCγ2, JNK, ERK, and many other proteins (Fig. 3C). In
contrast, rotenone treatment did not impair BCR-mediated ac-

tivation of the Syk pathway in primary B cells and DT40 B cells,
suggesting that BCR-induced activation of this pathway is in-
dependent of the respiratory chain (Fig. 3C). Similar results were
obtained when mitochondrial respiratory chain function was
perturbed directly or indirectly with the ATP synthase inhibitor
oligomycin and electron transport chain uncoupler carbonyl cy-
anide m-chlorophenyl hydrazine, thus further consistent with a
critical role of the respiratory chain in H2O2 signaling (Fig. S2F).
Taken together, the mitochondrial respiratory chain thus has a
selective role in H2O2-induced activation of the Syk pathway but
not in activation of this pathway in response to extracellular ligand-
mediated receptor engagement. Further supporting the notion that
H2O2-induced activation of Syk and BCR-induced activation of Syk
are distinct processes, BCR ligation but not H2O2 induced the ap-
pearance of slower migrating Syk-positive bands consistent with
ubiquitinated Syk (60) (e.g., Fig. 3C). Overall, H2O2-mediated sig-
nal transduction is thus characterized by a series of hierarchical
signaling events placing the respiratory chain upstream of Lyn, Lyn
upstream of Syk and SHP1, and Syk upstream of a distinct signaling
and cellular response in hematopoietic and nonhematopoietic cells.

CA B

Fig. 3. Lyn and the respiratory chain, but not protein tyrosine phosphatases, are required for H2O2-induced activation of the Syk pathway. (A) Immunoblots
of H2O2-stimulated mouse splenic B cells (0.5 mM H2O2 for 5 min) or primary MEFs (2 mM H2O2 for 10 min) pretreated with the phosphatase inhibitor Na3VO4

(100 μM) and H2O2 stimulated SHP1- and/or SHP2-deficient DT40 cells (2 mM for 5 min). Stimulation of mouse splenic B cells and primary MEFs pretreated with
30 nM dasatinib (B) or 50 nM rotenone (C) and Lyn- and Lyn/Syk-deficient DT40 B cells treated with 1 mM H2O2 for 5 min and 50 μg/mL anti-mouse IgM for
3 min (B cells), 5 mM H2O2 for 10 min (MEFs), and 5 mM H2O2 for 5 min and 10 μg/mL anti-chicken IgM for 3 min (DT40 B cells).
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H2O2 Induces Phosphorylation of Mitochondria-Associated Lyn, Syk, and
Many Other Proteins. Signaling induced by the BCR and other plasma
membrane-bound receptors initially clusters at the site of the en-
gaged receptors (38, 61). Given our results that H2O2-mediated Syk
signaling is controlled by the respiratory chain, we reasoned that Lyn
and Syk activation occurs, at least in part, in association with the
mitochondria. Immunopurification of mitochondria and associated
membranes showed that H2O2 induced robust phosphorylation of
Lyn, Syk, and many other distinct proteins in the mitochondrial
fraction of both primary B cells and MEFs (Fig. 4A). Consistent
with these findings, H2O2 treatment of B cells induced Lyn and Syk
phosphorylation overlapping with complex I staining as judged by
confocal imaging (Fig. 4 B and C). In contrast, Syk phosphorylation
induced by BCR cross-linking on the B-cell surface was found ex-
clusively at the outer rim of the cell, consistent with cap formation

and localized signaling from the plasma membrane (61, 62) (Fig.
4 B and C). Furthermore, 13 Syk targets are known mitochon-
drial proteins among them essential metabolic enzymes, in sup-
port of a role for Syk in H2O2-mediated mitochondrial regulation
(Dataset S1). H2O2 induced activation of the Syk pathway thus
appears to take place in part though not exclusively associated
with the mitochondria in line with the view that the respiratory
chain is an upstream component of an H2O2-induced signal
transduction cascade mediated by Lyn and Syk.

A Pool of Cellular Lyn and Syk Localizes to theMitochondrial Intermembrane
Space. To determine the precise spatial relationship of Syk pathway
members with the mitochondria, we performed submitochondrial
fractionation of mouse spleen mitochondria. A large portion of
Lyn, Syk, and SHP1 remained associated with the mitochondria

A

E

D

B

C

F

G

Fig. 4. H2O2 induces phosphorylation of mitochondria-associated Lyn and Syk, which localize to the differential interference contrast mitochondrial in-
termembrane space and are transiently and stably associated with the mitochondrial membrane compartment. (A) Tom22-mediated mitochondrial immu-
nopurification of B cells and MEFs stimulated with H2O2 (B cells: 1 mM H2O2 for 5 min, MEFs: 5 mM H2O2 for 10 min). Mito, mitochondrial fraction; WCL,
whole-cell lysate. (B and C) Immunofluorescence staining and confocal images of mouse splenic B cells stimulated with 1 mM H2O2 for 5 min and 50 μg/mL
anti-IgM for 3 min. DIC, differential interference contrast; Max, maximum. Mitochondrial subfractionation of mouse spleen mitochondria treated with
hypoosmotic (swelling) buffer and PK (D) and quantitation of signal intensity of immunoblots (E). IMM, inner mitochondrial membrane; IMS, intermembrane
space; OMM, outer mitochondrial membrane. (F) Carbonate extraction of mouse spleen mitochondria separating membrane integral (P) and soluble (SN)
proteins. sol, soluble; Tm, transmembrane. (G) Confocal images of resting mouse splenic B cells stained as indicated.
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after digestion with proteinase K (PK), which resulted in deg-
radation of outer mitochondrial membrane proteins as indicated
by loss of Tom22 (Fig. 4 D and E). Lyn, Syk, and SHP1 almost

disappeared after incubation in hypotonic buffer, rupturing the
outer mitochondrial membrane and resulting in PK-mediated
degradation of the intermembrane space-facing domain of inner
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Fig. 5. The Syk pathway is coexpressed, is evolutionary ancient, and displays low missense variation in the human. (A) Microarray analysis of normal human tissues
showing SYK transcript expression plotted as a box plot with Tukey whiskers (n = 688). The dotted line represents the median of all samples across tissues.
(B) Categorization of evidence for a critical function of Syk in different cell types: established, abundant evidence using different cellular models and a combination of
pharmacological and genetic approaches or pharmacological in vivo evidence demonstrating a critical role; likely, abundant evidence using different cellular models
and a combination of pharmacological and genetic approaches or pharmacological in vivo evidence demonstrating a critical role; possible, at least one study in a
cellular model using a combination of pharmacological and genetic approaches demonstrating a critical role. (C) Correlation of mRNA expression across different
normal human tissues derived frommRNA sequencing datasets (n = 48). r, Pearson correlation coefficient. (D) Rooted phylogenetic tree of Syk orthologs in the animal
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mitochondrial membrane protein Tim23 (Fig. 4 D and E), overall
suggesting localization of a sizable fraction of Lyn, Syk, and SHP1
in the mitochondrial intermembrane space. Separation of soluble
and membrane-integrated mitochondrial proteins showed that Syk
and SHP1 were partially associated with and Lyn was exclusively
associated with the mitochondrial membrane fraction (Fig. 4F),
thus paralleling the transient activating association of Syk and
SHP1 with plasma membrane-bound phosphotyrosine motifs and
the stable plasma membrane association of Lyn (53, 63). Consistent
with mitochondrial localization, Lyn, Syk, and SHP1, but not the
plasma membrane-bound phosphatase receptor-type tyrosine-
protein phosphatase C (B220/CD45/Ptprc), overlapped with complex
I in splenic B cells by confocal imaging (Fig. 4G). Lyn, Syk, and SHP1
were also detected in liver mitochondria from which endoplasmic
reticulum remnants tethered to mitochondria were removed by Per-
coll gradient centrifugation (Fig. S3A). In line with these findings, Syk
and phosphorylated Syk also overlapped with liver mitochondria by
tissue immunofluorescence staining and confocal imaging, overall
supporting mitochondrial localization also in nonhematopoietic cells
(Fig. S3B). Taken together, these results suggest that a portion
of cellular Lyn, Syk, and SHP1 localizes to the mitochondrial inter-
membrane space and appears to be transiently (Syk and SHP1) or
stably (Lyn) associated with themitochondrial membrane compartment.

The Syk Pathway Is of Early Metazoan Origin, Is Coexpressed Across
Tissues, and Shows Evidence of Evolutionary Constraint in the Human.
Given the critical role of ROS signaling across biology, we finally
reasoned that evidence may exist compatible with a function of Syk
beyond linking immunoreceptor tyrosine–based activation motif
(ITAM)-bearing receptors of the immune system to downstream
pathways (46, 64). Indeed, database mining of large microarray and
mRNA sequencing datasets, and our confirmatory quantitative
PCR assay and immunohistochemistry of normal human and
mouse tissues, showed that Syk transcript and protein were de-
tectable in every tissue examined, although smaller amounts relative
to total RNA and protein were found in most nonhematopoietic
cells (Fig. 5A and Fig. S4 A–D). Analysis and categorization of the
available 3,078 indexed research articles mentioning Syk suggested
that Syk is functional in cell types derived from every organ system,
although conclusive genetic evidence for a critical in vivo role exists
only for hematopoietic tissues and mammary and vascular endo-
thelial cells (Fig. 5B and Table S1). Further, expression of LYN,
PTPN6, BTK, and PLCγ2, was correlated with SYK expression in a
wide range of human tissues, whereas there were minor, no, or
negative correlations with expression of the BCR-associated
adapter CD79A (Igα), related family members, and other Syk tar-
gets as judged by both mRNA sequencing and microarray data (Fig.
5C and Table S2). These results suggest a constant stoichiometry of
Syk with Syk pathway members, consistent with the idea that these
proteins interact and form functional units or “signalosomes” in
many different tissues.
We identified known and predicted Syk orthologs in every ver-

tebrate examined, as well as in evolutionarily distant groups of
extant metazoans, including a member of the earliest group of
metazoans, the sponge Amphimedon queenslandica (65), but not in
yeast, plants, and bacteria (Fig. 5D, Fig. S4E, and Table S3). These
findings add to earlier observations identifying Syk orthologs in the
tunicate Hydra vulgaris and highlight a distribution of Syk orthologs
throughout the animal kingdom (66). Similarly, orthologs of the
Syk pathway members Lyn, SHP1, Btk, and PLCγ2 were found in
the sponge A. queenslandica but not in premetazoan species. In
contrast, all known ITAM-containing immune receptor-associated
adapters were detected only in evolutionarily recent vertebrates.
These findings thus suggest an evolutionary origin of the Syk
pathway ∼1.2 billion y ago, closer to the evolutionary origins of
members of the MAPK and mammalian target of rapamycin
(mTOR) pathways than to the evolutionary origins of the ITAMs
of the immune system (Fig. 5E and Table S4).
A low ratio of nonsynonymous to synonymous rare variants in

humans and other species suggests purifying selection, thus allowing
an estimate of the effects of missense variation in a given gene on

reproductive fitness. Similar to genes of the MAPK and mTOR
pathways, LYN, SYK, PTPN6, BTK, and PLCG2 displayed low ra-
tios of rare missense variants to synonymous variants compared
with the known ITAM-bearing immune adapters and many other
immune-related genes as judged by mining exomes of 60,706 in-
dividuals assembled by the Exome Aggregation Consortium (Fig.
5F). Syk and the Syk pathway may thus also have a critical function
in normal human physiology.
Literature curation revealed that 45 diverse stimuli ranging from

hormones and growth factors to endogenous stressors such as high
glucose induce signaling in a Syk-dependent manner (Fig. 5G and
Table S5). Thirty-eight of these diverse stimuli are also known to
induce signaling in a ROS-dependent manner, raising the possibility
that a unifying mechanism of Syk activation by many stressors might
be its activation by endogenous ROS (Fig. 5G and Table S5). In
support of such a notion, osmotic stress and TNF induce Syk
phosphorylation in a ROS-dependent manner (67, 68), suggesting
that Syk critically mediates signaling not only in response to extra-
cellular ROS but possibly also in response to intracellular ROS.
Taken together, the ubiquitous expression of Syk, coexpression of
Syk interaction partners in different tissues, occurrence of Syk across
the animal kingdom, origin of the Syk pathway early in metazoan
evolution, evidence for Syk signaling in numerous ROS-mediated
processes, and signs of evolutionary constraint on the pathway in the
human suggest a much broader role for Syk than currently appre-
ciated and are compatible with a role in ROS signaling.

Discussion
Here, we provide evidence suggesting that H2O2 signaling has
multiple distinguishing features of a signal transduction cascade. It
is characterized by a sequence of events culminating in a distinct
signaling response: The upstream respiratory chain selectively ac-
tivates Lyn, resulting in activation of downstream Syk, which, in
turn, controls tyrosine phosphorylation of pathways critically in-
volved in signaling, transcription, translation, metabolism, and cell
cycle regulation. Its upstream components reside and are active
in physical proximity: H2O2-mediated Lyn and Syk activation oc-
curs, at least in part, in proximity to the respiratory chain, and a
pool of cellular Lyn and Syk localizes to the mitochondrial in-
termembrane space. Finally, it is controlled by the same mediators
in different species and tissues responsive to H2O2: The re-
spiratory chain and the conserved and ubiquitous Syk pathway
mediate H2O2 signaling in diverse cell types that include mouse
and chicken B cells as well as fibroblasts. The results thus provide
a framework to conceptualize ROS signaling and offer a rationale
for numerous avenues of investigation.
ROS and mitochondrial dysfunction have been linked to a large

number of biological processes and diseases, including adipogenesis,
neurodegeneration, cardiovascular disease, inflammation, and the
aging process itself (69–74). Although only extracellular H2O2 was
used in this study, it seems likely that intracellular H2O2 induced by
receptors and other stressors also uses this pathway, overall sug-
gesting that the immune kinase Syk might be critical for many more
cellular responses and disorders than currently appreciated. Ex-
ploring how modulation of Syk activity and gene dosage affects
different disease states will be particularly relevant for ongoing drug
development efforts currently focused only on hematological ma-
lignancies and autoimmune disease (64, 75).
The finding that the respiratory chain is required for H2O2-

induced Syk activation raises the intriguing possibility that an ITAM
in one of the more than 100 largely uncharacterized mammalian
respiratory chain subunits binds and activates mitochondrial inter-
membrane space-localized Syk. Although the present results impli-
cate the respiratory chain in signal transduction, identification of
a subunit with a functional ITAM would establish the respiratory
chain as a bona fide signal transducer. Such a subunit might also
mediate some of the many functions of the respiratory chain
described that are independent of its ability to produce ATP (59,
76–78). The present data suggesting mitochondrial intermem-
brane space localization of the Syk pathway also raise the question
of whether Syk and Lyn might directly tyrosine-phosphorylate

E5686 | www.pnas.org/cgi/doi/10.1073/pnas.1517932112 Patterson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517932112/-/DCSupplemental/pnas.201517932SI.pdf?targetid=nameddest=ST5
www.pnas.org/cgi/doi/10.1073/pnas.1517932112


www.manaraa.com

and modulate respiratory chain function. Indeed, there is pre-
cedence for a Src family kinase to modulate complex II activity,
consistent with the observation that the respiratory chain is
extensively posttranslationally modified (79, 80).
Our proposed model that H2O2 signaling resembles canonical

signal transduction implies the existence of an upstream ROS re-
ceptor that recognizes H2O2 with much higher sensitivity than its
surroundings. The most intuitive location of such a sensor might be
in the respiratory chain itself, which may have evolved to sense
H2O2 at the site of its production and transmit a signal to the cell via
mitochondrial intermembrane space localized signaling pathways.
Although the reaction constant for oxidation of the abundantly
present cysteine residues is generally low, iron and iron clusters
display much higher reactivity with H2O2, thus offering a limited
number of candidates as exquisitely sensitive receptor modules (1, 81,
82). In support of such a possibility, multiple iron cluster-containing
proteins induce transcriptional changes in bacteria, and thus might
represent ancestral ROS-sensing signal transducers (83).
Further, one might speculate that this pathway represents a

mechanism of mitochondrial control over ROS-induced cellular pro-
cesses such as differentiation and proliferation, or senescence
and programmed cell death. Indeed, communicating mitochon-
drial health to the cell might be a critical prerequisite to the
successful implementation of ROS-stimulated energetically de-
manding cellular processes. Further, the mitochondria might
also activate the Syk pathway to induce growth arrest and/or
programmed cell death as the present results suggest. Consistent
with utilization of this pathway for a spectrum of cellular re-
sponses, Syk and mitochondrial dysfunction have both been
implicated in cellular differentiation and proliferation, as well as
in tumor suppression (15, 64, 75, 84).
Finally, it is striking that a kinase of early metazoan origin such

as Syk is so critical for H2O2 signaling in vertebrate cells, given that
cellular responses to ROS first evolved in bacteria (1). Perhaps
the occurrence of the Syk pathway along with multicellularity
reflects an adaptation specific to metazoan life that allows the
integration of metabolic signals from the mitochondria with

other extracellular and intracellular cues transmitted and am-
plified by ITAMs (85). Indeed, the existence of several hundred
ITAM-containing proteins across biological processes has been
suggested (86), which might fulfill this function linking tissue- and
context-specific inputs to the basic and ubiquitous Syk pathway.

Materials and Methods
Cell Culture. Primary B cells were isolated by depletion of CD43-positive cells
from mouse spleen. Primary MEFs derived from embryonic day 14.5 embryos
were cultured for 2–4 d before use. DT40 cell lines were imported from
RIKEN and cultured in RPMI medium at 39.5 °C. All procedures were per-
formed according to protocols approved by the Committee on Animal Care
at the Massachusetts Institute of Technology and the University of Freiburg.

Phosphoproteomics.A label-free quantitative liquid chromatography-tandem
MS analysis was performed using an LTQ-Orbitrap-ELITE mass spectrometer
(Thermoscientific), electrospray ionization–collision-induced dissociation, and
SEQUEST search results following immunoprecipitation with Tyr phosphory-
lation motif antibody pY-1000 (Cell Signaling Technology).

Mitochondrial Subfractionation. Crude mitochondria were resuspended in
normosmotic buffer or hypotonic buffer [20 mM Hepes/KOH (pH 7.6)] and
incubated for 15 min, followed by PK (Roche) digestion for 15 min.

Statistical Methods. All statistical analyses were performed using Prism 6
(GraphPad Software, Inc.). Statistical significance was indicated as follows:
*P < 0.05; **P < 0.005; ***P < 0.0005.

Supplementary materials and methods, including antibodies used in this
study and listed in Table S6, are included in SI Materials and Methods.
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